Comparison Of Support Vector Machine And Naïve Bayes Algorithms For Analyzing Public Interest In Espresso Coffee
Abstract
Given its increasing popularity, public interest in buying espresso coffee is an important concern for coffee industry players. To understand and predict this buying interest, the use of classification algorithms in data analysis is crucial. This study was conducted to compare the performance of two popular classification algorithms, namely Support Vector Machine and Naïve Bayes, in analyzing public interest in buying espresso coffee. This research problem is based on the need for an accurate predictive model in the coffee industry to aid in strategic decision-making related to marketing and sales. The proposed solution is to implement two different classification algorithms and assess their performance using a variety of performance evaluation metrics. The purpose of this study is to determine which algorithm is superior in terms of accuracy, precision, recall, and f1-score. The research method entails collecting data on public interest in purchasing espresso coffee, preprocessing data, implementing both algorithms, and evaluating each algorithm's performance. The results show that Naïve Bayes consistently outperforms Support Vector Machine in all performance evaluation metrics. Naïve Bayes achieved 94.00% accuracy, 91.40% precision, 100% recall, and 95.51% F1-Score, compared to Support Vector Machine, which achieved 90.00% accuracy, 88.60% precision, 96.90% recall, and 92.56% F1-Score. The conclusion of this study is that the Naïve Bayes classifier is more effective and efficient in predicting people's purchasing interest in espresso coffee compared to support vector machines. This advantage can be attributed to the ability of Naïve Bayes to handle data that may have non-normal distributions or independent variables.
Downloads
References
R. Danutirta and R. Setiawati, “Teknik Pembuatan Perfect Espresso pada Operasional Lobby Lounge, Redtop Hotel Jakarta,” J. Indones. Tour. Policy Stud., vol. 2, no. 1, 2019, doi: 10.7454/jitps.v2i1.114.
D. Hamdan and A. A. Sastra, A to Z Memulai dan Mengelola Usaha Kedai Kopi, Cetakan Pe. PT AgroMedia Pustaka, 2020.
G. E. S., “Pengaruh Kopi terhadap Kelelahan Otot pada Sprint 100 Meter (Studi pada Mahasiswa Universitas Diponegoro),” Universitas Diponegoro, 2017.
S. Rais, Dailami, T. Pratama, N. O. Sipayung, and A. Saputra, “Pelatihan Barista Untuk Siswa-Siswi Di SMK Al-Azhar Batam,” J. Keker Wisata, vol. 2, no. 2, pp. 261–271, 2024, doi: 10.59193/jkw.v2i2.259.
A. R. Yusuf and S. Rais, “Peranan Barista dalam Menyajikan Minuman Kopi Berkualitas di Cafe Excelso Vitka Point Tiban Kota Batam,” Menata, vol. 2, no. 1, pp. 44–49, 2023, doi: 10.59193/jmt.v2i1.182.
D. Gumulya and I. S. Helmi, “Kajian Budaya Minum Kopi Indonesia,” J. Dimens., vol. 13, no. 2, pp. 153–172, 2017, doi: 10.25105/dim.v13i2.1785.
H. Hendriyana, I. M. Karo Karo, and S. Dewi, “Analisis perbandingan Algoritma Support Vector Machine, Naive Bayes dan Regresi Logistik untuk Memprediksi Donor Darah,” J. Teknol. Terpadu, vol. 8, no. 2, pp. 121–126, 2022, doi: 10.54914/jtt.v8i2.581.
F. Handayani et al., “Komparasi Support Vector Machine, Logistic Regression dan Artificial Neural Network dalam Prediksi Penyakit Jantung,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. Vol. 7 No. 3, 2021, doi: 10.26418/jp.v7i3.48053.
J. Rusman, B. Z. Haryati, and A. Michael, “Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi,” J. Komput. dan Inform., vol. 11, no. 2, pp. 195–202, 2023, doi: 10.35508/jicon.v11i2.12571.
F. Qardhawi, “Penerapan Algoritma Support Vector Machine (SVM) untuk Mendiagnosa Diabetes Melitus dan Hipertensi (Studi Kasus: Puskesmas Bnugoro),” Politeknik Negeri Ujung Pandang, 2023.
V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.
Afdhaluzzikri, H. Mawengkang, and O. S. Sitompul, “Perfomance of Naive Bayes method with data weighting,” SinkrOn, vol. 7, no. 3, pp. 817–821, 2022, doi: 10.33395/sinkron.v7i3.11516.
N. Azhar, P. P. Adikara, and S. Adinugroho, “Analisis Sentimen Ulasan Kedai Kopi Menggunakan Metode Naive Bayes dengan Seleksi Fitur Algoritme Genetika,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, p. 609, 2021, doi: 10.25126/jtiik.2021834436.
A. B. P. Negara, H. Muhardi, and I. M. Putri, “Analisis Sentimen Maskapai Penerbangan Menggunakan Metode Naive Bayes dan Seleksi Fitur Information Gain,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, p. 599, 2020.
T. Astuti and Y. Astuti, “Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO),” J. Media Inform. Budidarma, vol. 6, no. 4, p. 1806, 2022.
Copyright (c) 2025 International Journal of Science, Technology & Management

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.